
Intel® Distribution for Python*
High Performance Python for Data Analytics and More

Asma Farjallah

Courtesy of Frank Schlimbach 1

2

Legal Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will
affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase.

Results have been simulated and are provided for informational purposes only. Results were derived using simulations run on an architecture
simulator or model. Any difference in system hardware or software design or configuration may affect actual performance.

For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel
encourages all of its customers to visit the referenced Web sites or others where similar performance benchmark data are reported and confirm
whether the referenced benchmark data are accurate and reflect performance of systems available for purchase.

Copyright © 2016, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other
countries. *Other names and brands may be claimed as the property of others.

http://www.intel.com/performance

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

What Problems We Solve:
1. Productive Performance

Make Python* usable beyond prototyping environment by
scaling out to HPC and Big Data environments

3

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

4

“Any articles I found on your site that
related to actually using the MKL for
compiling something were overly
technical. I couldn't figure out what
the heck some of the things were
doing or talking about.“ – Intel® Parallel Studio

2015 Beta Survey Response

https://software.intel.com/en-us/forums/intel-math-kernel-library/topic/280832

https://software.intel.com/en-us/articles/building-numpyscipy-with-intel-mkl-and-intel-fortran-on-windows

https://software.intel.com/en-us/articles/numpyscipy-with-intel-mkl

What Problems We Solve:
2. Ease-Of-Use

4

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. 5

Intel® Xeon Phi™ Product Family

Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy* 1.11.0, scipy* 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy 1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python 2017;.
Hardware: Xeon: Intel Xeon CPU E5-2698 v3 @ 2.30 GHz (2 sockets, 16 cores each, HT=off), 64 GB of RAM, 8 DIMMS of 8GB@2133MHz; Xeon Phi: Intel Intel® Xeon Phi™ CPU 7210 1.30 GHz, 96 GB of RAM, 6 DIMMS of 16GB@1200MHz

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice. Notice revision #20110804 .

New AVX512 instructions based product

Intel® Xeon® Processors

Mature AVX2 instructions based product

What Problems We Solve:
3. Fast Access to Optimizations

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. 6

Math/Compute
• Numpy*
• Scipy*
• pyDAAL
• Scikit-learn*
• Numexpr*
• Sympy*
• Mpmath*
• Caffe*
• Theano*

Parallelism/Performance
• TBB
• Mpi4py*
• Numba*
• Cython*
• Pyzmq*
• Distarray*
• Pandas*
• Pytables*
• H5py*

Productivity
• Conda*
• Pip*
• Jupyter*
• Notebook*
• Matplotlib*
• Nose*/pytest*/mock*

Misc

• Python 2.7/3.5
• Jinja2*

• Pyyaml*
• Tornado*

• Llvmlite*
• Six*

• MarkupSafe*
• Pytz*

• Dateutil*
…

Intel® MKL
Intel® IPP

Intel® DAAL
Intel® Compiler

Intel® TBB
Intel® MPI

Intel® Compiler

Powered by

What's in Intel® Distribution for Python*?
Scipy-stack + selected BigData/ML/HPC packages

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. 7

Intel® Distribution for Python* landscape

Intel®
DAALIntel®

IPP
Intel®
MPI

Intel®
TBB

Intel®
MKL

Scipy
Scikit-
learn

pyDAAL JupyterNumpy

Tensor-
flow*

Finance* Spark*

…

Intel®
Distribution
for Python*

Intel®
Performance
Libraries

Python
Packages …

Foo Dask*

mpi4py

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. 8

Download full installer from
https://software.intel.com/en-us/intel-distribution-for-python

> conda config --add channels intel

> conda create -n ip3 intelpython3_full

> source activate ip3

or

Linux* Windows*

MacOS*

Stand-alone installer and on anaconda.org/intel

Installing Intel® Distribution for Python*

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Continuous on Anaconda.org

2018 Beta

Intel® Distribution for Python* Releases

2017 2017 U1 2017 U2 2017 U3

2018 BetaU

Sep
2016

Oct
2016

Feb
2017

Apr
2017

May
2017

Jun
2017

Sep
2017

2017 U4

2018

9

• MLSL
• Theano
• Caffe
• OpenCV

• Scipy-stack
• Random_intel
• Performance
• TBB
• pyDAAL

• Performance

• Usability

• Neural

networks

(pyDAAL)

• Docker images

• Faster FFT
• Faster Umath
• Faster Memory
• Faster Skit-learn

Intel® Parallel Studio XE 2018 (Beta) libraries

Python 3.6

Intel® Parallel Studio XE 2017 libraries

Out-of-the-box performance
with accelerated numerical packages

10

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Widespread optimizations in NumPy & SciPy FFT

11

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 core 32 cores 1 core 32 cores 1 core 32 cores 1 core 32 cores 1 core 32 cores 1 core 32 cores

1D FFT 2D FFT 3D FFT 1D FFT 2D FFT 3D FFT

in-place out-of-place

Python* FFT Performance as a Percentage of C/Intel® Math Kernel Library (Intel® MKL)
for Intel® Xeon™ Processor Family (Higher is Better)

pip/numpy Intel Python

Configuration:
Software:
Pip*/NumPy*: Installed
with Pip, Ubuntu*,
Python* 3.5.2,
NumPy=1.12.1, scikit-
learn*=0.18.1, Intel®
Distribution for Python
2017, Update 2
Hardware:
Intel® Xeon® E5-2698
v3 processor @ 2.30
GHz (2 sockets, 16
cores each, 1 thread
per core), 64GB of
DRAM; Intel® Xeon
Phi™ processor 7210 @
1.30 GHz (1 socket, 64
cores, 4 threads per
core), DRAM 32 GB,
MCDRAM (Flat mode
enabled) 16GB

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Widespread optimizations in NumPy & SciPy FFT

12

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 core 256 cores 1 core 256 cores 1 core 256 cores 1 core 256 cores 1 core 256 cores 1 core 256 cores

1D FFT 2D FFT 3D FFT 1D FFT 2D FFT 3D FFT

in-place out-of-place

Python* FFT Performance as a Percentage of C/Intel® Math Kernel Library (Intel® MKL)
for Intel® Xeon Phi™ Product Family (Higher is Better)

pip/numpy Intel Python

Configuration:
Software:
Pip*/NumPy*: Installed
with Pip, Ubuntu*,
Python* 3.5.2,
NumPy=1.12.1, scikit-
learn*=0.18.1, Intel®
Distribution for Python
2017, Update 2
Hardware:
Intel® Xeon® E5-2698
v3 processor @ 2.30
GHz (2 sockets, 16
cores each, 1 thread
per core), 64GB of
DRAM; Intel® Xeon
Phi™ processor 7210 @
1.30 GHz (1 socket, 64
cores, 4 threads per
core), DRAM 32 GB,
MCDRAM (Flat mode
enabled) 16GB

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel® DAAL in Scikit-learn*

13

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 core 32 cores 1 core 32 cores 1 core 32 cores 1 core 32 cores

1K x 200K 1K x 200K 10M x 50 10M x 50

Correllation Distance Cosine Distance Linear Regression (Training) Ridge Regression (Training)

Python* Performance as a Percentage of C++ Intel® Data Analytics Acceleration Library
(Intel® DAAL) on Intel® Xeon® Processors (Higher is Better)

pip/scikit-learn Intel Python

Configuration:
Software:
Pip*/NumPy*: Installed
with Pip, Ubuntu*,
Python* 3.5.2,
NumPy=1.12.1, scikit-
learn*=0.18.1, Intel®
Distribution for Python
2017, Update 2
Hardware:
Intel® Xeon® E5-2698
v3 processor @ 2.30
GHz (2 sockets, 16
cores each, 1 thread
per core), 64GB of
DRAM; Intel® Xeon
Phi™ processor 7210 @
1.30 GHz (1 socket, 64
cores, 4 threads per
core), DRAM 32 GB,
MCDRAM (Flat mode
enabled) 16GB

Parallelism

14

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

0x

1x

5x

25x

125x

625x

3125x

15625x

Python C C (Parallelism)

BLACK SCHOLES FORMULA
MOPTIONS/SEC

15

Why Parallelism Matters

Configuration info: - Versions: Intel® Distribution for Python 2.7.10 Technical Preview 1 (Aug 03, 2015), icc 15.0; Hardware: Intel® Xeon® CPU E5-2698 v3 @ 2.30GHz
(2 sockets, 16 cores each, HT=OFF), 64 GB of RAM, 8 DIMMS of 8GB@2133MHz; Operating System: Ubuntu 14.04 LTS.

55x

350x

Vectorization,
threading, and data

locality
optimizations

Static compilation

Unlocking parallelism is
essential to make Python

useful in production

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

 E.g. thread-pool

 But what about the infamous global interpreter lock?

 Can be released when calling out to C

 Native parts can be parallel as long as they do not execute Python

 not such a big issue with native computations

 Limited efficiency by Amdahl's law

16

Shared-Memory parallelism

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel® TBB runtime

Intel® MKL

Numpy Scipy

Intel®
DAAL

PyDAAL

Intel® TBB module
for Python

Joblib Dask
Thread
Pool

Numba

17

> python -m TBB application.py
Application

Component 1

Component N

Subcomponent 1

Subcomponent 2

Subcomponent K

Subcomponent 1

Subcomponent M

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

• Software components are built from smaller ones

• If each component is threaded there can be too much!

• Intel TBB dynamically balances thread loads and effectively manages
oversubscription

Intel® TBB: parallelism orchestration

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Numpy
1,00x

Numpy
0,22x

Numpy
0,47x

Dask
0,61x

Dask
0,89x

Dask
1,46x

-0,1x

0,1x

0,3x

0,5x

0,7x

0,9x

1,1x

1,3x

1,5x

Default MKL Serial MKL Intel® TBB
System info: 32x Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB
RAM; Intel(R) MKL 2017.0 Beta Update 1 Intel(R) 64 architecture, Intel(R) AVX2;

Intel(R)TBB 4.4.4; Ubuntu 14.04.4 LTS; Dask 0.10.0; Numpy 1.11.0.

Speedup relative to MKL Numpy

18

Example: Nested Paraellism in qr

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

 Intel® MPI library

 mpi4py

 ipyparallel

 We also support:

 PySpark -- Python interfaces for
Spark - a fast and general engine
for large-scale data processing.

 Dask -- a flexible parallel
computing library for analytic
computing.

19

Distributed parallelism

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

 Decorators annotate functions

 Just-in-time-compiles to native
machine instructions

 LLVM-based

 Can parallelize and vectorize
loops

 JIT API

 Math-heavy python can get close
to native (C/C++) performance

 Pure Python!

20

Numba: JIT compiler for python

Configuration Info: - Versions: Intel(R) Distribution for Python 2.7.11 2017, Beta (Mar 04, 2016), MKL version 11.3.2 for Intel Distribution for Python 2017, Beta, Fedora* built Python*: Python 2.7.10
(default, Sep 8 2015), NumPy 1.9.2, SciPy 0.14.1, multiprocessing 0.70a1 built with gcc 5.1.1; Hardware: 96 CPUs (HT ON), 4 sockets (12 cores/socket), 1 NUMA node, Intel(R) Xeon(R) E5-4657L
v2@2.40GHz, RAM 64GB, Operating System: Fedora release 23 (Twenty Three)

0

100

200

300

400

500

600

700

800

900

1000

M
O

P
/S

DATA SIZE

BLACK SCHOLES BENCHMARK

Original Numba TBB Numba Numpy

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

 Optimizing source-to-source compiler

 Python + extensions (Cython, based on Pyrex)

 Types, GIL, parallel, etc.

 Can parallelize loops

 Works with any C compiler

 Intel compiler can SIMD'ize

 Used to create a Python module which then can be imported/used

21

Cython: compilable Python

Profiling with
Intel® Vtune™ Amplifier

22

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Feature cProfile Line_profiler Intel® VTune™ Amplifier

Profiling technology Event Instrumentation Sampling, hardware events

Analysis granularity Function-level Line-level Line-level, call stack, time windows,
hardware events

Intrusiveness Medium (1.3-5x) High (4-10x) Low (1.05-1.3x)

Mixed language programs Python Python Python, Cython, C++, Fortran

23

Intel® VTune™ Amplifier

 Right tool for high performance application profiling at all levels
• Function-level and line-level hotspot analysis, down to disassembly

• Call stack analysis

• Low overhead

• Mixed-language, multi-threaded application analysis

• Advanced hardware event analysis for native codes (Cython, C++, Fortran) for
cache misses, branch misprediction, etc.

collaborative filtering
case study

24

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Recommendations of useful purchases

 Amazon, Netflix, Spotify,... use this all the time

25

Real World Example

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

• Processes users’ past behavior, their activities and ratings

• Predicts, what user might want to buy depending on his/her preferences

26

Collaborative Filtering

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

 Training

 Reading of items and its ratings

 Estimating item-to-item similarity

 Recommendation

 Reading of user’s ratings

 Generating recommendations

27

Collaborative Filtering:
Training and Recommendation

Input data from http://grouplens.org/:
1 000 000 ratings, 6040 users, 3260 movies

http://grouplens.org/

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. 28

Configuration Info: - Versions: Red Hat Enterprise Linux* built Python*:
Python 2.7.5 (default, Feb 11 2014), NumPy 1.7.1, SciPy 0.12.1,
multiprocessing 0.70a1 built with gcc 4.8.2; Hardware: 24 CPUs (HT ON), 2
Sockets (6 cores/socket), 2 NUMA nodes, Intel(R) Xeon(R) X5680@3.33GHz,
RAM 24GB, Operating System: Red Hat Enterprise Linux Server release 7.0
(Maipo)

Items similarity assessment
(similarity matrix computation)
is the main hotspot

Training: Profiling pure python

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. 29

Training: Profiling pure Python

Configuration Info: - Versions: Red Hat Enterprise Linux* built Python*:
Python 2.7.5 (default, Feb 11 2014), NumPy 1.7.1, SciPy 0.12.1,
multiprocessing 0.70a1 built with gcc 4.8.2; Hardware: 24 CPUs (HT ON), 2
Sockets (6 cores/socket), 2 NUMA nodes, Intel(R) Xeon(R) X5680@3.33GHz,
RAM 24GB, Operating System: Red Hat Enterprise Linux Server release 7.0
(Maipo)

This loop is major bottleneck.
Use appropriate technologies
(NumPy/SciPy/Scikit-Learn or
Cython/Numba) to accelerate

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. 30

 Much faster!

 The most compute-
intensive part takes ~5%
of all the execution time

Configuration info: 96 CPUs (HT ON), 4 Sockets (12 cores/socket), 1 NUMA nodes, Intel(R) Xeon(R) E5-4657L v2@2.40GHz, RAM 64GB, Operating System: Fedora release 23 (Twenty Three)

Training: Python + Numpy (MKL)

Copyright ® 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. 31

Intel® Distribution for Python*

Full scipy-stack
 numpy, scipy, matplotlib,

ipython/jupyter, sympy, pandas

Plus Selected HPC/Big-Data packages
 pyDAAL, scikit-learn, mpi4py, tbb…

Python* 2.7 and 3.5
Windows*, Linux*, MacOS* (all 64bit)
Commercial support via Intel® Parallel Studio

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

https://software.intel.com/en-us/articles/optimization-notice#opt-en

